How Misinfodemics Spread Disease

 

Selección

[:es]They called it the Great Stink. In the summer of 1858, London was hit with a heat wave of noxious consequence. The city filled with a stench emanating from opaque pale-brown fluid flowing along what was once poetically known as the “Silver Thames.” Politicians whose offices overlooked the river doused their curtains with chloride of lime to mask the smell, the first time they’d been incentivized to really take action. At the time, close-quarters living arrangements and poor hygiene were contributing to a rise in illnesses and epidemics. But residents of what was then the world’s largest city believed it was unpleasant smells that directly transmitted contagions such as the plague, chlamydia, and cholera.

Their belief, the miasma theory of disease transmission, had some truth to it—it just wasn’t precise. The smell of stagnant, contaminated water is indicative of a perfect breeding ground for microorganisms that can cause water-borne diseases. But it’s the germs in the water—not the stench emanating from it—that’s really the problem, and, at the time, scientists had limited technologies and tools to understand the difference. So they found themselves focusing on solutions that couldn’t actually stop the spread of disease.

Now disease also spreads via Facebook statuses and Google results—not just the droplets from a sneeze or the particles that linger in the air when we forget to cough properly into our elbow crease—and around the world, digital health misinformation is having increasingly catastrophic impacts on physical health. Recent research found that Twitter bots were sharing content that contributed to positive sentiments about e-cigarettes. In West Africa, online health misinformation added to the Ebola death toll. In New South Wales, Australia, where the spread of conspiracy theories about water fluoridation run rampant, children suffering from tooth decay are hospitalized for mass extractions at higher rates than in regions where water fluoridation exists. Over the past several weeks, new cases of measles—which the Centers for Disease Control and Prevention declared eliminated from the United States in 2000—have emerged in places such as PortlandBostonChicago, and Michigan; researchers worry that the reemergence of preventable diseases such as this one is related to a drop in immunization rates due to declining trust in vaccines, which is in turn tied to misleading content encountered on the internet. With new tools and technologies now available to help identify where and how health misinformation spreads, evidence is building that the health misinformation we encounter online can motivate decisions and behaviors that actually make us more susceptible to disease.

Segui leyendo: The Atlantic[:ca]They called it the Great Stink. In the summer of 1858, London was hit with a heat wave of noxious consequence. The city filled with a stench emanating from opaque pale-brown fluid flowing along what was once poetically known as the “Silver Thames.” Politicians whose offices overlooked the river doused their curtains with chloride of lime to mask the smell, the first time they’d been incentivized to really take action. At the time, close-quarters living arrangements and poor hygiene were contributing to a rise in illnesses and epidemics. But residents of what was then the world’s largest city believed it was unpleasant smells that directly transmitted contagions such as the plague, chlamydia, and cholera.

Their belief, the miasma theory of disease transmission, had some truth to it—it just wasn’t precise. The smell of stagnant, contaminated water is indicative of a perfect breeding ground for microorganisms that can cause water-borne diseases. But it’s the germs in the water—not the stench emanating from it—that’s really the problem, and, at the time, scientists had limited technologies and tools to understand the difference. So they found themselves focusing on solutions that couldn’t actually stop the spread of disease.

Now disease also spreads via Facebook statuses and Google results—not just the droplets from a sneeze or the particles that linger in the air when we forget to cough properly into our elbow crease—and around the world, digital health misinformation is having increasingly catastrophic impacts on physical health. Recent research found that Twitter bots were sharing content that contributed to positive sentiments about e-cigarettes. In West Africa, online health misinformation added to the Ebola death toll. In New South Wales, Australia, where the spread of conspiracy theories about water fluoridation run rampant, children suffering from tooth decay are hospitalized for mass extractions at higher rates than in regions where water fluoridation exists. Over the past several weeks, new cases of measles—which the Centers for Disease Control and Prevention declared eliminated from the United States in 2000—have emerged in places such as PortlandBostonChicago, and Michigan; researchers worry that the reemergence of preventable diseases such as this one is related to a drop in immunization rates due to declining trust in vaccines, which is in turn tied to misleading content encountered on the internet. With new tools and technologies now available to help identify where and how health misinformation spreads, evidence is building that the health misinformation we encounter online can motivate decisions and behaviors that actually make us more susceptible to disease.

Segui leyendo: The Atlantic

[:]

Vistas:

155